PaulOS An 8051 Real-Time Operating System
Part | Interfacing

11 Interfacing

This chapter deals with interfacing various devices to the 8051 family of micro-controllers. The list here
is endless but the basic add-ons such as simple LEDs, switches, keypads, LCDs, DC motors (including

servos and stepper motors) are all well covered with example programs.

11.1 Interfacing add-ons to the 8051

The 8051 on its own can be of little use unless we somehow manage to connect it to the real world.
Minimally we would need some form of output device, such as an LED or a buzzer and an input interface

which might even be a simple ON-OFF switch. Before going further, let us mention two important notes:

o A common fault when interfacing devices (even if simple) or other boards to the 8051 is to
forget to connect the ground of the external device to the ground of the 8051 board. This
would result in floating signals which would give indeterminate results.

o We should also remember when using the 8051 ports that port 0 needs external pull-up
resistors whilst ports 1, 2 and 3 do not need any since they have them already internally

wired. These pull-up resistors are not always shown in the following diagrams since it

depends to which port we are connecting the interface circuit.

[studied
English for 16 .
years but...
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

"

Click to hear me talking

before and after my

unique course download

Download free eBooks at bookboon.com

245 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

With these notes in mind, we can list and describe a number of interface components which we can

connect to the 8051.

11.2 LEDs

The simplest output indicator which we can connect would be a Light Emitting Diode (LED). We can
connect the LED to either light up when the port pin is High (see Figure 11-1) or to light up when the
port pin is Low (see Figure 11-2).

_ Ve
-l it
R4

0 52
051 LED

GHD
GHO

Figure 11-1 Port Driving LED (pin High = LED on)

The option shown in Figure 11-2 is better since the port is being used to sink the current rather than

providing the source voltage.

+Hh

74

Fort Pin
AN o

4051 300 52
LED

GO GHD

Figure 11-2 Port Sinking LED (pin Low = LED on)
We now list a section of code in C using Keil uVision4 for the circuit shown in Figure 11-2.

It will flicker the LED, switching it off for 1 second and then on for another second and so on until the

microcontroller circuit is switched off.

Download free eBooks at bookboon.com

http://bookboon.com/

#include <REG52.H>
void msdelay(unsigned int);

sbit LED1 = P3A1; // refer to bit P3.1 (port 3 bit 1) as LED1
#define led_on 0

#define led_off 1

void main(){

LED1=0; /1 set pin 1 of PORT?3 as output
while(1){ //infinite loop
LEDI1 = 1; //pins high, LED is off, or use LED1 = led_off;
msdelay(250); /] some delay
LED1 = 0; // pin low, LEDs are on, or use LED1 = led_on;
msdelay(250); /] some delay
}
}
//delay function

void msdelay(unsigned int value){

unsigned int x,y;
for(x=0;x<value;x++)
for(y=0;y<1275;y++);

In C programs we cannot be sure of software delays, because they depend a lot on how the compiler

optimizes the loops. As soon as we make some changes in the compiling options, the delay time changes.

A better option would be to use the in-built micro-controller timers if we want to have exact delays.
Shown below is a function equivalent to a 1 second delay using timer 0, assuming we have an 11.0592
MHz crystal clock driving the micro-controller. The idea is to make a 50ms timer delay and repeat it
for 20 times (20x50ms = 1000ms = 1s) so as to obtain the required one second delay. The timer would
be counting at the rate of 12/11.0592 micro-seconds per count. Thus we need 46080 counts to get the
required 50ms delay, and therefore, as we recall, we need to load the timer with the value of 19456 (which

is 65536 — 46080) or 4C00 hex since our timer would be counting up until it overflows.

Download free eBooks at bookboon.com

http://bookboon.com/

delay_1s()

{
int d;
TMOD &= 0xFO0;
TMOD |= 0x01;
TFO = 0;
for (d=0; d<=20; d++)
{
TLO = 0x00;
THO = 0x4C;
TRO = 1;

while (TF0 == 0);

TRO = 0;
TFO = 0;

// using Timer 0 to get a 1 sec delay

// clear Timer 0 mode settings, temporarily to mode 0
// set Timer 0 in mode 1, 16-bit
/1 clear Timer 0 overflow flag

/] repeat 20 times

//'load it for 50ms overflow delay

// 4C00 hex = 19456

// start Timer O.

// run until TFO = 1, indicating overflow, waiting 50ms

/I stop Timer 0
// reset the Timer 0 overflow flag

This type of problem is very simple to write using the PaulOS RTOS. Just one task would be needed to

implement this LED flickering action:

Download free eBooks at bookboon.com

:\\\“'\

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

void Task_LED (void) {

while(1){ //infinite loop
LED1 = 1;
OS_WAITT_A(0,0, 250);
LED1 = 0;
OS_WAITT_A(0,0, 250);
t

11.2.1 Seven-Segment LED Displays

//pins high, LED is off, or use LED1 = led_off;
/1 250 millisecond delay

/I pin low, LEDs are on, or use LED1 = led_on;
/1 250 millisecond delay

Another simple output indicator which we can use is the familiar 7-segment LED display. There are

basically two types of such displays, either the so-called Common Cathode (all the cathodes or negative

connections are connected together to one common ground [GND] terminal) or the Common Anode

type where all the anodes (or positive connections) are connected to one common supply [Vcc] terminal

as shown in Figure 11-3. Apart from the 7 segments (a-g) forming the digit, some displays have an

optional 8" segment which we could use to represent a decimal point (dp).

Common Cathode Common Anode

a f Gnd & D o] f WYee a]

0 0 0 o0 0 J|'| 0 0 0
a ™ a i

f b

ii[8]

| b | -
| f—t—

I f'\\.

e c . i A

. ,_j n 'j LN,

- =1 | & - | ¥
 — r [——

O O O 0O 0 m| L|| o O

= d ond < dp @ d Ve o dp

Figure 11-3 7-segmnet LED displays

In order to switch on the required decimal digit, we can connect the 7 or 8 segment diodes to the 8-bit

port of the 8051 as we have already seen in the example with just one LED in Figure 11-2.

Download free eBooks at bookboon.com

http://bookboon.com/

The software would be written in such a way so as to switch on the required LEDs to display our decimal
number. Thus to display the number 3, we would need to light up segments a, b, ¢, d and g and switch
off the other segments. We should remember that with this direct drive method, the port must keep on

presenting the same data to the 7-segment display, otherwise the display would change.

The following Table 11-1 shows how we can display the various digits. The 2" and 3™ column in this

Table shows the output byte for the port, depending on the way the segments are connected to the port..

Digit | gfedcba
6543210

abcdefg
6543210

0 0x3F

0x7E

on

on

on

on

on

on

off

-

I~
I

-

1 0x06

0x30

off

on

on

off

off

off

off

=
mHml
o

2 0x5B

0x6D

on

on

off

on

on

off

on

n

~
-

3 0x4F

0x79

on

on

on

on

off

off

on

o
W

—
-

-

4 0x66

0x33

off

on

on

off

off

on

on

o
bl

|

—y
=

5 0x6D

0x5B

on

off

on

on

off

on

on

1l

i

N

=
|
~

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part | Interfacing

Digit | gfedcba | abcdefg | a b d d e f g
6543210 | 6543210

6 0x7D Ox5F on off on on on on on a

7 0x07 0x70 on on on off off off off

8 Ox7F Ox7F on on on on on on on

9 0x6F 0x7B on on on on off on on

A 0x77 0x77 on on on off on on on

b 0x7C Ox1F off off on on on on on

C 0x39 0x4E on off off on on on off a

d O0x5E 0x3D off on on on on off on a

Download free eBooks at bookboon.com

251

http://bookboon.com/

Digit | gfedcba | abcdefg | a b d d e f g
6543210 6543210
E 0x79 0x4F on off off on on on on —
g
—
: ’ ﬂc
|
d
F 0x71 0x47 on off off off on on on —
g
—
—
d

Table 11-1 LED 7 segment connections

We can also multiplex more than one 7-segment display by using a circuit as shown in Figure 11-4. One
port supplies the data to all the displays, whilst the transistors T1-T4 switch on one display at a time as
programmed by port 2. The first digit display would be left on for a few milliseconds and then switched
off. The data is then changed to reflect the second digit display which is then switched on also for a few
milliseconds. All the digits would be similarly switched on and off and this strobing action is repeated
indefinitely so as to the viewer all the displays would appear to be lighted up continuously. A sample
code program is listed to describe the program flow. We could also write the program using an RTOS
where a OS_WAITT_A() command would be used to replace the delay function, thus the processor can

be doing something else while waiting and driving the display.

Ft.0
Pl
Pt

P

Dlisplay Selector

3051 Al e

|
BE
%

1 |abcdefg. 2 |abcdefg. 3 |abcdefg. q |abcdefg.

Seqment [ata M

Comtmon Srode 7-Seqment Displays
Figure 11-4 Multiplexing displays

Download free eBooks at bookboon.com

http://bookboon.com/

sbit digit0 = P2/0;
sbit digitl = P2/ 1;
sbit digit2 = P2A2;
sbit digit3 = P2A3;

/] Assuming segment a is connected to bit P1.6, segment b to bit P1.5 etc, then from Table 11-1
/] we can select the segments to light up for each decimal digit 0-9 by sending the correct
/] segment data from the array segment[].
/] The digit can be selected by outputting a 1 on ONE pin from P2.0 to P2.3
unsigned char segments[10] = {0x7E, 0x30, 0x6D, 0x79, 0x33, 0x5B, 0x5F,
0x70, 0x7F, 0x7B};

P2 &= 0xF0; /1 switch oft all digits

while(1) // keep on looping

{

P1 = segments[0]; // send data to reflect the segments which need to be lighted up

// in this case the number shown would be 0

digit0 = 1; // switch on digit 0
delay(); /] wait for some time, calling the delay function
digit0 = 0; /] switch oft digit 0

/] Now repeat for the second 7 segment LED digit
P1 = segments[1]; /] send data to reflect the segments which need to be lighted up

// in this case the number shown would be 1

Digitl = 1; /1 switch on digit 1
delay(); /] wait for some time, calling the delay function
digitl = 0; /1 switch off digit 1

/] and so on for the other digits.

Download free eBooks at bookboon.com

http://bookboon.com/

To make programming easier and at the same time provide a data latching (memory) capability, avoiding
the need to keep on strobing the data, various 7-segment driver ICs were developed, the 4511 being one
of them. These generally have 4 data input pins (D, to D,) to represent the digit number which we want
to display, D, being the least significant bit. Some are decimal drivers, accepting a 4-bit BCD (binary
coded decimal number 0-9). Numbers greater than 9 (10-15) would show as blank. There are also Hex
drivers which can display the normal 0-9 decimal digits and also a, b, ¢, d, e and f with the limitations
of the 7-segment display. Thus A, C (not all drivers), E and F are shown as capital letters, whereas b, d
(and sometimes c) are shown as small letters. The latching (latch enable or LE pin) mechanism ensures
that once the data is latched on the IC (by putting LE low for a few micro-seconds, done in software by
setting the port pin which is connected to this LE terminal from high to low and then back to high),
then there is no need to keep the data at the 4511 input pins; the display would remain showing the
latched digit data until some new data is latched to that same LED driver.

o

L_ VDD
5051 ﬁ LI-?G %
eac

M3 D, ;511 g 1 —
F: ,] f I Ib

BE=="W

d
Mg LE g L *
I Gnd Cathode
4D
0 iz the least significant bit

Figure 11-5 LED BCD driver

If we have the port P1 connections as shown in Figure 11-5 then we can display the number 7 with the

following simple C code:

sbit LE = P1/4;

LE=1; /] ensure latch is High

P1 &= 0xF0; // clear lower 4 data bits

P1 |= 0x07; // set the correct data bits (in this case 7)
LE = 0; /] toggle the Latch Enable bit

LE =1;

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part | Interfacing

Two other control pins are usually available. The LT (lamp test) pin is usually used just to check that
all the segments are working, and when set to low, the number 8 is displayed, irrespective of the D -D,
input conditions. The BL (blanking input) pin is used to blank the display and is usually used to blank
the leading zeroes in a multi-digit display. If not required, these two control signals are usually connected

directly to the positive supply as shown in Figure 11-5.

We can also use the latch enable pin to multiplex more than one digit display to the same port. By latching
sequentially different 7-segment digits, we can easily have a 6-digit display to use as a clock to display
HH:MM:SS (the colon [:] can be obtained by using 4 separate LEDs, permanently on). Figure 11-6 shows
how we can connect two 7 segment displays using the 4511 BCD-to-7-segment driver, which we can
easily extend to more digits as required. The BCD data coming out of pins P1.0 to P1.3 is common to

all the digits but the display is selected by pulsing the correct LE pin, using P1.4 or P1.5

FULL ENGAGEMENT...

0000000000000 00000000000000000000 00

RUN FASTER.
RUN LONGER..
RUN EASIER... -

Download free eBooks at bookboon.com

255 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

— v — V
oo L L T
Bl Bl
4511 each 3 4511 each 3
M D“ g- [] e— 3 <] D-§ g- [] —
i D D 2 :—'I |b i D D 8 :—TI |b
PO 2|:)1 d — L MO ID] d C L
? :I—el |c ? :I—el e
— —1 4 L +—1 g
M4 LE 9 [e— LE g T | c—
I Gnd Cathode Gnd Cathode
483
I —I_I_ Digit 1 kJ kJ Digit 2
|]1is the least significant bit |]1is the least siqnificant bit

Figure 11-6 Multiplexing 4511s
For the circuit shown above in Figure 11-6 we can easily write a function which will handle everything:

sbit LE1 = P1/4;
sbit LE2 = P1/4;
Void Display(unsigned char Digit, unsigned char BCD_Data) {

P1 &= 0xF0; // clear lower 4 bits
P1 |= BCD_Data; /1 place data on output lines
if (Digit == 1) {
LEl1=1; // latch data to digit 1
LE1 =0;
LE1=1;
}
if (Digit == 2) {
LE2=1; // latch data to digit 2
LE2 = 0;
LE2=1;
}

Download free eBooks at bookboon.com

http://bookboon.com/

11.3 Input Switches

The simplest input is the switch, as shown in Figure 11-7. Here we can easily see that whenever the switch
is open, the microcontroller port pin would be effectively connected to the 5V supply through the 10k
ohm resistor. The microcontroller would read a high logic level or a 1. Closing the switch would ground
the pin and the microcontroller would read a zero logic level. The port pin would be programmed for

the input mode by initially writing a 1 to that pin.

]

+——— to microcontroller port pin

&._H‘C-

Figure 11-7 Switch (normally open, high on port pin)

On the other hand, in Figure 11-8 we can easily see that whenever the switch is open (normal position),
the microcontroller port pin would be effectively connected to the ground through the 10k ohm resistor.
The microcontroller would read a low logic level or a 0. Closing the switch would connect the pin to the

5V rail and the microcontroller would read a high logic level or a 1.

+———= to microcontroller port pin

I

Figure 11-8 Switch (normally open, low on port pin)

11.3.1 Switch Bounce

When a physical switch is closed the contacts bounce opened and closed rapidly for about 20 to 30 ms,

as illustrated below in Figure 11-9. The opening of a switch is normally clean and without bounce.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part | Interfacing

Figure 11-9 Switch bounce

While switch-close bounce is a very short time in human terms it is a very long time for a micro-controller
(the basic 8051 running on a system clock of 12 MHz executes a 1-byte instruction in 1 ps). Without
switch de-bouncing, the microcontroller would ‘think’ the switch was opened and closed repeatedly.
Imagine if a push-button switch was being used to increment the output to a digital to analogue convertor.
The software routine to poll the push button switch (expecting an oft-on-off action on the push switch,

returning a one when pressed, otherwise wait) would normally be:

o Wait while the switch is off
o Wait while the switch is on

 Switch can now be taken as pressed (off-on-off) and return a ‘1’

s @book 1s probucen with iText®

Download free eBooks at bookboon.com &\S«\

258 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

The main program would then normally stay in the endless:

{

Call switch polling routine (outlined above)

Increment voltage routine

}

If the switch was connected to the microcontroller without any switch de-bouncing mechanism, then

a user pressing the switch once would actually result in the DAC output voltage being increased many

times because the microcontroller would respond as if the switch had been pressed many times.

De-bouncing mechanisms can be implemented:

1.

By means of a software delay of around 30ms between two successive readings of the switch
(to let the bouncing die down), whilst it is being polled. If the switch readings agree, then
the switch is really on.

o Wait while the switch is oft

o Wait 30ms

o Exit if switch is off (return a ‘0’), else

« Wait while the switch is on

 Switch can now be taken as pressed (off-on-off) and return a ‘1’

Another software technique is to connect the switch to an interrupt pin instead of polling

it routinely. It would be easier if a normally-high output from the switch is used and
connected to the external interrupt, negative-edge triggered mode. As soon as the switch is
pressed, we would have a high-to-low transition which would trigger an external interrupt.
The ISR is called where we would immediately disable the external interrupt (otherwise we
would have lots of them due to bouncing), wait for 30ms and then read the switch again. If
we still read an ON condition, then we have detected a valid switch-on event and proceed
accordingly. We can then enable the interrupts again and exit the ISR once finished with the
response required. If the second reading shows an OFF condition, then we can take it as a
glitch (or still bouncing) and that no switch has been pressed and once again we enable the
interrupts again and exit the ISR without taking further action. If the bouncing is still going
on, we would detect another interrupt and automatically repeat the ISR again.

By hardware, usually using a one shot device, which means that as soon as the switches
flickers to the on position, the output of the one-shot will remain steadily on and bouncing

is thus eliminated.

Download free eBooks at bookboon.com

http://bookboon.com/

114 Keypad

Multiple switches (or keypads and keyboards) are normaly connected in the form of a matrix where the
vertical lines (columns) and horizontal lines (rows) are connected to the controller ports (either directly
or via pull-up resistors) as shown in Figure 11-10. The port connections can be programmed to act as

either input or output lines as required in order to be able to decide which key, if any, has been pressed.

+5Y >
R1| [IR2| |R3| |R4
8051 p
)]]]]
ADER I
™ 1 I]]
IDERIBIRIE
™ 1 I]]
T P ll hl kl l.
~]]]]
\—r \—l \—l \—l
o b
L1 N
T ”
P =
LI N
T r

Figure 11-10 Keypad switch matrix
The method to detect a key press is as follows:

1. We set all output columns bits to 0.

2. The input row pins are then read.

3. If any row pin is a zero, then we know that a key in that row is being pressed, although we
cannot tell yet which one of the four it is. If the input is not zero, we just have to wait and
keep on reading the input port, waiting for a key press (going back to step 2).

4. If in the input row reading we do indeed detect a zero, then usually a bouncing delay is
initiated so as to eliminate any bouncing or erroneous key contact (unless the bouncing is
being taken care of by other hardware devices).

5. We read once again the input after this delay, and if the same row is giving a zero then we
can start the process to determine exactly which column switch in that row is being pressed
(the correct row is now known). If we do not detect a zero in arrow, then we take it that it

was a glitch and go back to step 2, waiting for a key press.

Download free eBooks at bookboon.com

http://bookboon.com/

6. We can determine which key is being pressed by setting the input to zero for one column
at a time and reading the row state until we read a zero. When the correct column
is determined, then we have effectively decoded the key press, since we had already

determined the row in step 5.

11.4.1 Keypad: interrupts vs polling

Instead of using this algorithm, where we are effectively waiting (whilst reading the port input)
for any key press, we can modify the circuit to that shown in Figure 11-11. Note that in this
figure, the rows are the output bits (P1.0 to P1.3) of the port, while the higher nibble of the
port (P1.4 to P1.7) act as the input to read the column values.

All the rows are first set to zero and the external INTO interrupt is enabled. The column input
signals are ANDed together to provide an external INTO interrupt low logic signal whenever
any column goes low (negative edge triggered, activated when the signal goes from high to low).
The INTO interrupt service routine (ISR) would then be activated so that we can determine

which key is being pressed.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

L

g Full-up

[m Resistars

P1
P1
P1
P1

= oinim o~

P
P
P1
P

o o b

INTO

051

Figure 11-11 Interrupt keypad interface
We set all output row bits to 0, and enable the external negative-edge INTO interrupt in the
main program. We cannot obviously keep on looping and waiting within the ISR itself so the
algorithm is modified as described below.

The ISR, activated whenever there is a key press would then perform the following:

The external interrupt is disabled. This is especially important in this case, since the

bouncing effect of a switch would otherwise cause repeated interrupts.

. A de-bounce delay (typically 30 ms) is initiated so as to wait for any bouncing or erroneous

key contact to die down.

3. The input column pins are then read.

7.

If any column pin is a zero, then we know that a key in that column is being pressed,
although we cannot tell yet which one of the four it is. If we do not detect a zero on any
input line, then the interrupt was probably caused by some glitch or intermittent key contact
and we jump immediately to step 7 to exit the ISR.

If in the input column reading we do indeed detect a zero, then we can start the process to
determine exactly which row switch in that column is being pressed (the correct column is
now known from the input data pattern).

We can determine which actual key is being pressed by setting the input to zero for

one row at a time and reading the column state until we read a zero. When the correct
row is determined, then we have effectively decoded the key press, since we had already
determined the column in step 5.

Enable once again the external INTO interrupt, and exit the ISR.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part | Interfacing

10.5 LCD Display

A Liquid Crystal Display (LCD) provides a versatile output screen where normal text and graphics can be
displayed, thus providing more versatility than the simple LED devices mentioned above. LCD displays
come in many different versions, but here we shall deal with the cheap and simple 2 or 4 line display,
providing 16 or 20 characters per line capability. It can be programmed to run either in the 8-bit data
or in the 4-bit data mode if we do not have the luxury of using an 8-bit port dedicated to supply just
the data bits to the LCD.

Figure 11-12 shows how we can connect a standard LCD (such as the Hitachi HD44780) to an 8051
microcontroller. Apart from the ground, supply, back lighting and contrast pins, we would need 8 data
bits (D0-D7) in 8-bit mode or just 4 data bits (D4-D7) in the 4-bit mode so that we can communicate
with the LCD. There are also 3 additional control signals RS, R/W and E (or EN) which we need to

connect to the 8051 to provide the required hand-shaking control signals.

« RS is the register select signal, so that the LCD would know whether we are sending data to
be displayed or sending a command intended to give some instructions to the LCD.

« R/W, as the name implies is the Read or Write signal which determines the direction of the
data flow (reading from the LCD or writing to the LCD).

o E (or EN) is the enable pin, which has to be toggled so that any data is latched on to the

device.
360°
thinking
Deloitte
DiSCOVCI‘ the truth at WWW.dClOittC,Ca/CarCCI‘S © Deloitte & Touche LLP and affiliated entities.
Download free eBooks at bookboon.com &\S«\

263 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Figure 11-12 Standard LCD connections

The Read capability is mainly used to read the status of the LCD so that we can make sure that
the LCD is ready to receive the next data or instruction. This is because the LCD takes some
time to perform the required instructions, and not all instructions take the same amount of
time to be executed. Hence the need to read the status of the LCD and wait for the LCD ready
signal before proceeding. In many applications, we may only be required to write to the LCD,
without the need to read anything. In this case we may simply initiate a fixed delay between
issuing commands or data transfers, so as to be sure that the LCD has finished from the previous
command, without the need to check the LCD status. Since the Write pin is active low, we can
connect this pin permanently to ground in such cases. So, if we are only writing to the LCD
and if we are using the 4-bit mode, we would then need only 6 bits (4-bits data, the EN and
RS control signals) to communicate with the LCD. The LCD ground line naturally has to be

common with the 8051 ground.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part | Interfacing

11.5.1 Programming the HD44780

In order to write a command or data, the following sequence of commands needs to be made, depending

on the mode of operation of the LCD:

8-Bit Write Sequence

Make Sure “EN"is 0 or low

Set “R/S"to 0 for a command, or 1 for data/characters

Put the data/command on D7-0

Set “EN” (EN= 1 or High)

Wait At Least 450 ns!!!

Clear“EN” (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Table 11-2 LCD 8-bit write sequence

4-Bit Write Sequence

Make Sure “EN"is 0 or low

Set “R/S"to 0 for a command, or 1 for data/characters

Put the HIGH BYTE of the data/command on D7-4

Set“EN” (EN= 1 or High)

Wait At Least 450 ns!!!

Clear “EN" (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Put the LOW BYTE of the data/command on D7-4

Wait At Least 450 ns!!!

Clear“EN” (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Table 11-3 LCD 4-bit write sequence

11.6 LCD Command Set

There are certain instructions or commands which we need to get familiar with in order to be able to
program or setup the LCD display. The R/S and R/W control lines are also used depending on the type

of the command required. Dedicated functions can be written which can take care of the initialisation

and LCD mode setup as explain in the following sub-sections.

Download free eBooks at bookboon.com

265

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partl Interfacing
R/S ([R/W | D7 |D6 | D5 | D4 (D3 | D2 | D1 | DO Instruction/Description
0 0 o|jo0o|O0|O0O|O|O]|O]|n Clear Display and Home the Cursor
0 0 ojo0ojo|joO0O|O0]|O0]|n1 * Return Cursor and LCD to Home Position
0 0 ojo|o0]|o0]|O 1 |ID}|S Set Cursor Move Direction
0 0 ojo|jo0o|O0|1|D|C]|B Enable Display/Cursor
0 0 00| 0| 1T |[SC|IRL|* | * Move Cursor/Shift Display
0 0 0|0 | 1T |DL|NJ|F/|=*|* Set Interface Length
0 0 0|1 A|lA|A|A|A]A Move Cursor into CGRAM
0 0 1 A|lA|A|A|A|A]|A Move Cursor to Display
0 1T |BFE | * | * | * | * | * | x| * Poll the “Busy Flag”
1 0 D|D|D|D|D|D]|D| D| WriteaCharacter to the Display at the Current Cursor Position
1 1 D|D|D|D|D]|D]| D| D |Readthe Character on the Display at the Current Cursor Position

Table 11-4 LCD Command set

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

s o S R
F 'I_hn:il“:_ll;., --yy"‘l...f- , rts

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

266 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

The bit abbreviations used in Table 11-4 for the different commands are explained in the following list:

“*” - Not Used/Ignored. This bit can be either “1” or “0”

Set Cursor Move Direction:

ID - Increment the Cursor After Each Byte Written to Display if set
S - Shift Display when Byte Written to Display if set
Enable Display/Cursor

D - Turn Display On(1)/Oft(0)

C - Turn Cursor On(1)/Off(0)

B - Cursor Blink On(1)/Off(0)

Move Cursor/Shift Display

SC - Display Shift On(1)/Oft(0)

RL - Direction of Shift Right(1)/Left(0)

Set Interface Length

DL - Set Data Interface Length 8(1)/4(0)

N - Number of Display Lines 1(0)/2(1)

F - Character Font 5x10(1)/5x7(0)

Poll the “Busy Flag”
BF - This bit is set while the LCD is processing

Move Cursor to CGRAM/Display
A - Address

Read/Write ASCII to the Display
D - Data

We now provide some basic initialisation code for the 8-bit and for the 4-bit connection so that we can

interface and communicate with this LCD.

General Initialisation Example Initialisation
1 Wait 20ms for LCD to power up
2 Write D7-0 = 30 hex, with RS =0
3 Wait 5ms
4 Write D7-0 = 30 hex, with RS = 0, again
5 Wait 200us
6 Write D7-0 = 30 hex, with RS = 0, one more time
7 Wait 200us
8 Write Command “Set Interface” Write 38 hex (8-Bits, 2-lines)
9 Write Command “Enable Display/Cursor” Write 08 hex (don't shift display, hide cursor)
10 Write Command “Clear and Home” Write 01 hex (clear and home display)
1 Write Command “Set Cursor Move Direction” Write 06 hex (move cursor right)
12 - Write 0C hex (turn on display)
Display is ready to accept data.

Table 11-5 LCD 8-bit mode initialisation

Download free eBooks at bookboon.com

http://bookboon.com/

11.6.1 The 8-bit mode LCD initialisation sample program

From the above tables, we can write some basic initialisation program for the LCD, staring with the
8-bit mode of operation. In this program we are making certain assumptions regarding the port pin

connections to the LCD lines as can be seen from the initial remarks found in the code listing.

/* Assume that LCD-RS is connected to bit 0 of Port 2 (or LCD_CTRL_PORT)*/

* 0 = Command, 1 = Data */
/* Assume that LCD-RW is connected to bit 1 of Port 2 (or LCD_CTRL_PORT) */
/* 0 = Write, 1 = Read */
/* Assume that LCD-EN is connected to bit 2 of Port 2 (or LCD_CTRL_PORT) */

/* A high (1) to low (0) transition is needed to latch data/command */
#define LCD_CTRL_PORT P2

sbit RSbit = LCD_CTRL_PORTA0;

sbit RWbit = LCD_CTRL_PORTA1;

sbit ENbit = LCD_CTRL_PORTA2;

/* If we only use the Control Port just for this purpose, we can send any one of the */

/* following defined items to set all three control lines simultaneously */
/* bit 2 1 0 */

#define ClearLines 0x00 /*EN=0,RW =0,RS =0*/

#define LatchCommand1 0x04 [*EN=1,RW=0,RS=0*/

#define LatchCommand?2 0x00 /*EN=0,RW=0,RS=0%*/

#define LatchDatal 0x05 [*EN=1,RW=0,RS=1%*/

#define LatchData2 0x01 /[*EN=0,RW=0,RS=1%/

#define ReadDataLinesl 0x06 EN=1,RW=1,RS=0%/

#define ReadDataLines2 0x02 FEN=0,RW=1,RS=0*/

/* Assume that the 8-bits data are connected to Port 1 (or LCD_DATA_PORT) */
#define LCD_DATA_PORT P1

/******X’*****X’*****X’*****X’***********X’*****X’*****X’*****X’***********X’*****X’***/

void LCD_SOFT_WAIT (int x)
{
unsigned int i,j;
for(j=1; j<=x; j++)1
for(i=0; i<=120; i++){}; /* JUST A DELAY */
}
}

Download free eBooks at bookboon.com

http://bookboon.com/

/**/

void LCD_SHORT_WAIT (void)
{
unsigned char i;
i++;
i++;

}

/**/

/* This Wait If Busy routine can be used ONLY after the initialisation */
void LCD_WAIT_IF_BUSY()
{
unsigned char Status;
LCD_DATA_PORT = 0xFF; /* set DATA port to input mode */
do

{
RWhbit = 1; RSbit = 0; ENbit = 1; */ set reading mode */
/* or LCD_CTRL_PORT = ReadDataLine2;*/
LCD_SHORT_WAIT();
ENbit = 0; /* or LCD_CTRL_PORT = ReadDataLinel;*/
Status = LCD_DATA_PORT;
} while ((Status & 0x80) == 0x80);

ENbit = 1;
LCD_DATA_PORT = 0x00; /* set DATA port to output mode */
}

/**/

/**/

void LCD_SEND_INIT(char ch) /* send display init to lcd */

{
LCD_DATA_PORT = ch;
ENbit = 1; RWbit = 0; RSbit = 0; /I command sending mode
LCD_SHORT_WAIT();
ENbit = 0;
LCD_SOFT_WAIT(20); /* wait for at least 5 milliseconds */
ENbit = 1;
/* cannot check busy line yet, not until the initialisation has finished */
}

Download free eBooks at bookboon.com

http://bookboon.com/

/**/

void LCD_Send_Command(char ch) /* write display command to lcd */
{
LCD_WAIT_IF_BUSY();
LCD_DATA_PORT = ch;

ENbit = 1; RWbit = 0; RSbit = 0; // command sending mode
LCD_SHORT_WAIT();

ENbit = 0;

} /* end lcd write */

/**/

void LCD_Send_Data(char ch) /* write display data to lcd */
{
LCD_WAIT_IF_BUSY();
LCD_DATA_PORT = ch;

ENbit = 1; RWbit = 0; RSbit = 1; // data sending mode
LCD_SHORT_WAIT();

ENbit = 0;

} /* end lcd write */

/**/

/* 8-bit mode */

void LCD_INIT(void) /* reset lcd display */
{
LCD_CTRL_PORT = LCD_DATA _PORT =0; /* set both 8251 ports as output */
LCD_SOFT_WAIT(50); /* wait a few milliseconds, after power on */
ENbit = 0; RWbit = 0; RSbit = 0; // clear control lines
LCD_SEND_INIT(0x38); /* get attention */
LCD_SEND_INIT(0x38); /* set mode to 8 bit DATA 2 lines, 5x7 dots */
LCD_SEND_COMMAND(0x0C); /* Display On, Cursor Off and Blinking off */
LCD_SEND_COMMAND(0x01); /* Clear Display */
LCD_SEND_COMMAND(0x06); /* Set Entry Mode */

} /* end of lcd initialisation */

11.6.2 4-bit mode LCD Initialisation

We have to remember that in this 4-bit mode any Data/Command writes of one-byte size are handled

using:
send high-nibble, delay, send low-nibble, delay

sequence, where 1 nibble is equivalent to 4 bits.

Download free eBooks at bookboon.com

http://bookboon.com/

General Initialisation Example Initialisation
1 Wait 20ms for LCD to power up
2 Write D7-4 = 3 hex, with RS =0
3 Wait 5ms
4 Write D7-4 = 3 hex, with RS = 0, again
5 Wait 200us
6 Write D7-4 = 3 hex, with RS = 0, one more time
7 Wait 200us
8 Write D7-4 = 2 hex, to enable four-bit mode
9 Wait 5ms
10 Write Command “Set Interface” Write 28 hex (4-Bits, 2-lines)
1 Write Command “Enable Display/Cursor” Write 08 hex (don't shift display, hide cursor)
12 Write Command “Clear and Home” Write 01 hex (clear and home display)
13 Write Command “Set Cursor Move Direction” Write 06 hex (move cursor right)
14 - Write 0C hex (turn on display)
Display is ready to accept data.

Table 11-6 LCD 4-bit mode initialisation

11.6.3 The 4-bit mode LCD initialisation sample program

Here we assume that the control signals are connected to the lower 3 bits (RS to bit 0, RW to bit 1 and
EN to bit 2), while the 4 data lines (D4-D7) are connected to the upper four bits of the port. D4 to port
bit 4, D5 to port bit 5 and so on.

#define LCD_PORT P2
sbit RSbit = LCD_PORTAO0;
sbit RWbit = LCD_PORTA1;
sbit ENbit = LCD_PORTA2;

#define LCD_EN 0x04
#define LCD_RW 0x02
#define LCD_RS 0x01

// The 4 data lines (D4-D7) are connected to the upper four bits of the port.
// D4 to port bit 4, D5 to port bit 5 and so on.

Download free eBooks at bookboon.com

http://bookboon.com/

void LCD_Wait_If Busy (void) /* wait for lcd if busy */
{

/I 'The Busy Flag is the most significant bit of the received data
char c,d;
LCD_PORT = 0xFO0; /1 set port upper nibble to input mode
do {
ENbit = 1;
RWhbit = 1; // prepare for a Write operation
led_soft_wait(5);
¢ = (LCD_PORT & 0xF0); /* read high data nibble */
ENbit = 0;
RWhbit = 0;
lcd_soft_wait(5);
ENbit = 1;
RWhbit = 1; /] prepare for a Write operation
lcd_soft_wait(5);
d = (LCD_PORT & 0xF0); /* read low data nibble, in Port.4 — Port.7 bits */
ENbit = 0;
RWbit = 0;
d=d>>4; /* move it to the lower nibble
c=c+d; /* combine nibbles to form 8-bit data */
} while (c & 0x80); /* wait for Busy Flag (BF) line to go low */
LCD_PORT = 0x00; // set all port pins to output mode again
} /*end lcd busy wait */

void LCD_Send_Data(char ch) /* write display data to lcd */
{
LCD_Wait_If Busy();
LCD_PORT = ((ch & 0xf0) | LCD_EN | LCD_RS); /* send character high nibble */
ENbit = 0;
led_soft_wait(3);
LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN | LCD_RS); /* send character high nibble */
ENbit = 0;
} /* end lcd data write */

void LCD_Send_Command(char ch) /* write display command to led */

Download free eBooks at bookboon.com

http://bookboon.com/

{

LCD_Wait_If Busy();

LCD_PORT = ((ch & 0xf0) | LCD_EN); /* send character high nibble */
ENbit = 0;

led_soft_wait(3);

LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN); /* send character low nibble */

ENbit = 0;
} /* end lcd write command function */
void LCD_Send_Init_ Command(char ch) /* write display initialization commands to lcd
*/
// Cannot use LCD_Wait_If Busy routine yet.
{
LCD_PORT = ((ch & 0xf0) | LCD_EN); /* send character high nibble */
ENbit = 0;
led_soft_wait(5);
LCD_PORT = (((ch & 0x0f) << 4) | LCD_EN); /* send character low nibble */
ENbit = 0;
lcd_soft_wait(5);
} /* end lcd write command function */
void LCD_Init_4(void) /* reset lcd display */
{
lcd_soft_wait(10); /* wait at least 15ms after power on*/
LCD_Send_Init_ Command (0x33); /* get attention */
led_soft_wait(5); /* wait */
LCD_Send_Init_Command (0x32); /* get attention */
lcd_soft_wait(10); /* wait */

LCD_Send_Init_Command (0x20); /* 4 bit DATA transfer from now on */
led_soft_wait(5);

// LCD_Send_Init_Command (0x28); /* 4 bit data, 2 lines, 5x7 dots */
LCD_Send_Init_ Command (0x2C); /* 4 bit data, 2 lines, 5x10 dots */

LCD_Send_Command (0x06); /* Move Cursor to the right. Do not shift display */
LCD_Send_Command (0x0C); /* Display On, Cursor and Blinking off */

// LCD_Send_Command (0x08); /* Display, Cursor and Blinking Off */

// LCD_Send_Command (0xO0F); /* Display, Cursor and Blinking on */
LCD_Send_Command (0x01); /* Clear Display */
} /* end lcd initialize */

In any mode, in order to write a text string to the LCD, instead of writing a letter at a time we can write a

routine. In the smaple program below we are assuming that the length of the text fits into the LCD display.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partl Interfacing

void LCD_Write_String (char *s)
{
while (*s) { /* Write all characters within string, checking for the end of string char /0 */
LCD_Send_Data(*s++); /* Send character to LCD display */

Similarly we can then write various other routines so that we can centre our text, write at any row or

column position, display a moving text and so on.

11.7 DC Motor

A simple DC motor can be connected to the 8051 as shown in Figure 11-13. Since the motor takes some
appreciable amount of current, especially when switching on, we cannot drive it directly through the
port. We normally use a transistor such as the BD139 (or mechanical relay) to switch it on and off, as
shown in Figure 11-13. The type of the transistor used depends on the motor specification, mainly the
current that it takes. Since this current would all be passing through the transistor, Q1 must be able to
handle the power without overheating. A heat-sink is also used in most case to keep the temperature
of the transistor within limits. The diode across the motor is needed in order to provide a path for the

back emf generated by the motor itself.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

oo o B
LT Ty
|-’ = ‘.-'. L
™ : ai’e

Month 16

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

Download free eBooks at bookboon.com

274 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Figure 11-13 DC Motor interfacing

The supply for the dc motor is normally a separate supply which can handle the power requirements of

the motor and moreover reduces the glitches on the 8051 supply rail.

Apart from just switching it ON (running at maximum speed) when we need the motor and then switching
OFF when we are done with it, we can also make it run at variable speeds by switching it ON and OFF
with a pulse train (or Pulse Width Modulation [PWM] signal), varying the ON pulse width relative to
the OFF time. The inertia of the motor armature and whatever it is driving, will keep the motor turning
even during the OFF cycle. The greater the ON time, the faster it goes, since the average voltage of the

signal would be higher, as shown in Figure 11-14.

Figure 11-14 PWM used to control DC motor speed
Download free eBooks at bookboon.com

http://bookboon.com/

Having a very low mark (1 or ON) to space (0 or OFF) ratio could result in the motor not turning at all.
It depends a lot on the type of motor and how free is the armature to rotate. So we can expect that the

mark-to-space ratio would need to be above 30% for the motor to start turning and overcome friction etc.

An example which can be adapted to this setup is given in section 11.8 when discussing the H-bridge

connection. The principle of using PWM to adjust and control the motor speed is still the same.

11.8 DC motor using H-Bridge

If we add an H-bridge to our circuit, we can now also change the direction of rotation of the motor, apart
from controlling its speed. The H-bridge operation can be best explained with reference to the following
figures which describe the operation of the dc motor. The switches shown would actually be transistor

switches and they could be switched ON and OFF by means of signals coming out of the 8051 port.

Figure 11-15 shows the motor in the OFF position, where all the switches are off.

+/

Switch
Switch J

2
1 ”
Switch Switch
4

Figure 11-15 Motor Off

If now switches 1 and 4 are switched ON, leaving the others off, the motor would turn at full speed in

one direction say clockwise, as shown in Figure 11-16.

Download free eBooks at bookboon.com

http://bookboon.com/

+/

I

Switch Current Switch
1 flow s 2
) Switch
Switch Current | + 4
3 Mlow

Figure 11-16 Motor Clockwise Rotation

On the other hand, if we switch ON 2 and 3, and leaving switches 1 and 4 OFF as shown in Figure 11-17
the motor would turn at full speed in the opposite direction, since the supply would now be inverted

with respect to the motor terminals.

.

UROPEAN
BUS INESS
SCHOOL

FINANCIAL TIMES

EHHEER

;
I

i
l #2obevond

. S ! |/
r jll":’ '; : »

MASTER IN MANAGEMENT 5

«Beeause achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English,
Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative
and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu W in VouTibe i3

Download free eBooks at bookboon.com :\\\«\\

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

+

T

Switch Current Switch
flow r 2
1 o
Switch Switch
3 Current 1
Mlow

I

Figure 11-17 Motor Anti-Clockwise Rotation

Thus we can see that the switches normally operate in pairs since switches 1 and 4 switch on and off
together and the same thing with switches 2 and 3. We would therefore require two signals which moreover
are always of the opposite logic with respect to each other (one is the complement of the other). Hence
theoretically we could do with one signal and its complement (which we can obtain by using an inverter).
However, the need to avoid having all the switches ON at the same time (which can happen during the
transition due to the propagation delay), it would be best if we use two separate signals (S1 and S2) to
control the two separate pairs of switches as shown in Figure 11-18, making sure that we switch off one

pair before switching on the other pair.

Once again, if instead of switching these sets of switches permanently ON, we supply them with a PWM
signal, we now have the capability to control BOTH the speed and the direction of the DC motor.

A typical H-bridge, using discrete components is shown in Figure 11-18, with the transistors acting as
the switches, being driven from the 8051 ports. We have to ensure by means of our software program
not to have both transistors on either side of the motor ON at the same time, otherwise we would be

short-circuiting the motor supply.

Download free eBooks at bookboon.com

http://bookboon.com/

1

21) oz
E1 oL (Vs Rz

O,

R4 R3
L4 0]

0 O
1

Figure 11-18 H-Bridge circuit with discrete devices

A

T

Thus, before switching from one set of transistors to the other set in order to change the direction, we
must make sure to switch off ALL the transistors first. The algorithm to control the speed and direction
is very simple and we describe it briefly here with the source code for a routine which controls the circuit
shown in Figure 11-18. Speed can take a value between 0 and 100 representing zero (off) to 100% full
speed. Direction can be either C (clockwise) or A (anti-clockwise). Duration would be the length of

time in milliseconds that the motor has to be in that state.

We are assuming that we have a timer routine called ms_delay(unsigned long delay) which would wait

for the specified amount of milliseconds.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part| Interfacing

Download free eBooks at bookboon.com

280

http://bookboon.com/

void MotorControl(char Direction, unsigned char Speed, unsigned long Duration) {

unsigned long milliSeconds;
milliSeconds = 0;

if (Speed == 0) {
S1=S82=0;
ms_delay(Duration);

} // switch off motor completely

else if ((Speed == 100) && ((Direction == A)) || (Direction == "))){

S1=0;
S2=1;
ms_delay(Duration); // full speed anti-clockwise, no PWM required
S1=S82=0;
}
else if ((Speed == 100) && ((Direction == ‘C’) || (Direction == ¢’))){
S1=1;
S2=0;
ms_delay(Duration); // full speed clockwise, no PWM equired
S1=S2=0;
}
else{ /1 0 < speed < 100 hence PWM is required
milliSeconds = 0; /I used for timing the duration of the PWM
while(milliSeconds < Duration)
{
// first switch off one pair of transistors, then turn on the other pair of transistors
// to avoid shorting the power supply
if (Direction == A) || (Direction == @)) {S1 = 0; S2 = 1;}
if (Direction == ‘C’) || (Direction == ©’)) {S2 = 0; S1 = 1}
ms_delay((unsigned long)Speed);
S1=0;S2=0;
ms_delay((unsigned long)(100 - Speed));
milliSeconds += 100UL; // add one PWM period to check duration
}
}
}

Download free eBooks at bookboon.com

http://bookboon.com/

void ms_delay(unsigned long delay_ms) {

/I Assuming clock is 11.0592 MHz, then 921 timer counts

/] would take approximately 1 millisecond

/] Hence timer registers will be loaded with (65536 - 921)

// i.e. 64615, so that it will overflow after 1 millisecond

// THO = 64615/256 = 252
/1 TLO = 64615%256 = 103

TMOD &= 0xF0;
TMOD |= 0x01;
ETO = 0;

while (delay_ms > 0) {

THO = 252;

TLO = 103;

TFO = 0;
TRO = 1;

while (!TF0);
delay_ms--;
TRO = 0;
}
TF0 = 0;

void main(void) {

S1=82=0;

MotorControl(A0,1000UL);
MotorControl(‘C390,4000UL);
MotorControl(‘A,50,3000UL);
MotorControl(‘C’10,2000UL);
MotorControl(A;100,2500UL);

while(1);

// set Timer 0 in 16-bit mode 1

// disable Timer 0 interrupts just in case

//'load Timer 0 registers for 1 millisecond delay
/I clear Timer 0 overflow flag

// start Timer 0

// wait for Timer 0 overflow

/I decrement 1 millisecond

/I stop Timer 0

/I Reset flag before exit

// start with motor off

/I motor stopped for 1 second

/! motor clockwise at 90%, for 4 seconds

// motor anti-clockwise at 50%, for 3 seconds
// motor clockwise at 10%, for 2 seconds

// motor anti-clockwise at 100%, for 2.5 seconds

/1 stay here when finished

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part |

Interfacing
The H-bridge is so much in use that special ICs from a wide range of manufacturers have been designed.
Shown in Figure 11-19 is a typical IC, the L292D which has the capability to drive 2 dc motors separately.
Datasheets for this and similar devices are readily available on the internet, which fully describe the

operation complete with examples.

W
o £y
LZ23D
1,ZE ool
1 4a
1T 47
GHD GHND
MOTOE A MOTOR B
GHD GHND
- z7 7 _
zh 34
ook 3,4E
+W
5V

-

Figure 11-19 L293D H-bridge connection

*I studied
English for 16
years but...
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

-

OUT THERE

8

Click to hear me talking

before and after my

unique course download

— — b {

Download free eBooks at bookboon.com

283

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

11.9 Model Servo Control

Radio Controlled (RC) model servo motors, of the type shown in Figure 11-20 can also be very easily
controlled using the 8051. They are widely used in RC aero models and miniature robotics. These types
of motors require a PWM signal very similar to the one explained above in sections 11.7 and 11.8. We
need to have a PWM period of 20ms and we need to vary the ON time in the range of 1 to 2ms. A 1ms
pulse would result in a full right movement say while a 2ms ON pulse would turn the servo arm to the

full left position (a 1.5ms ON pulse would place the servo arm in the centre or neutral position).

Figure 11-20 RC Servo (www.parallaxinc.com)

Just three connections are needed as shown in Figure 11-21, two for the supply (usually around 5V, red
is positive and black is ground) and the third wire (usually white or yellow) is where the PWM signal is
fed from the micro-controller port pin. We should always remember to connect the ground of the servo

to the ground of the micro-controller, since we would normally be feeding the servo from a separate

higher capacity supply source.

+5Y +aY

.

8051

Part Servo
Pin tlotor

|||—

Figure 11-21 RC Servo connection

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part | Interfacing

Servos like all other motors, consume a lot of power especially when under load and it therefore would
make sense to use a separate power supply just for the servo motor which would also reduce the

interference on the 8051 supply lines.

We can also find servos which are slightly modified so that instead of just turning plus or minus 90
degrees, they are able to turn continuously. For example, a 1ms pulse would cause the servo to turn
continuously clockwise and a 2ms pulse would turn it continuously anti-clockwise. In order to stop the

servo, we would need to feed it with a 1.5ms pulse train, still using 20ms PWM periodicity.

11.10 Stepper Motor

The stepper motor (see Figure 11-22) is one of the commonly used motors for precise angular movement.

The advantage of using a stepper motor is that the angular position of the motor shaft can be controlled
without the need of any feedback mechanism. They are widely used in industrial and commercial
applications as well as in drive systems of autonomous robots.

Figure 11-22 Typical Stepper Motors

They are commonly found in dot-matrix or ink-jet printers to drive the printing head and feed forward
the paper. By switching on the appropriate coils (see Figure 11-23), we can make the armature to rotate to
and then stop at a specified rotation angle, so as it would align with the stator magnetic field. Moreover,
if the whole 360 degree sequence is continuously repeated, the stepper motor can be made to turn at
the required speed and in the required direction. The program would just have to determine which coils

are to be energised and for how long.

Various ICs are available to drive these stepper motors and the L297 (or similar) stepper motor controller

IC in conjunction with the L298 (or similar) dual H-bridge IC can be used.

Download free eBooks at bookboon.com

285

http://www.engineersgarage.com/articles/stepper-motors
http://www.engineersgarage.com/articles/stepper-motors
http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part | Interfacing

(a) (t)

Cycle Py 2 T Posilion
1 ON OFF _ OFF o
OFF ON OFF a0”
OFF OFF ON [
2 ON _ OFF _ OFF wo®
OFF ON_ OFF 120®
OFF OFF _ ON 1s0®
3 ON OFF OFF 180°

OFF ON OFF 210™

()

Figure 11-23 Stepper Motor sequence (zone.ni.com)

Excellent Economics and Business programmes at:

Z ——\
7

university of e AACSB

groningen b ACCREDITED

| -
“The perfect start
of a successful,

_- . international career.”

% to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

&\5«

Click on the ad to read more

Download free eBooks at bookboon.com

286

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

